

(e)

Brownian motion

PHYSICS, PAPER-I

TIME ALL PART-I(M	OWED: THREE HOURS CQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS = MAXIMUM MARKS =		
NOTE: (i) (ii) (iii) (iv) (v) (v) (vi) (vi)	Part-II is to be attempted on the separate Answer Book . Attempt ONLY FOUR questions from PART-II . ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at different places.				
		PART-II			
Q. No. 2.	(b) Prove that if the vector is the around a closed curve is zero.(c) A particle moves along the curve is a curve is zero.	A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t-5$ where t is the time. Find the components of its velocity and acceleration at time t=1 in the			
Q. No. 3.		Vhat is moment of inertia? State and prove parallel axis theorem. Calculate rotational inertia of a hollow cylinder about cylindrical axis.			
Q. No. 4.	 planetary motion. (b) A satellite orbits at a height period of satellite? (c) At what altitude above the ear 	A satellite orbits at a height of 230km above the Earth surface. What is the			
Q. No. 5.	 (a) What is diffraction grating? E for resolving power of grating. (b) What is meant by polarization by a polarizing sheet? 		-	(12) (8)	
Q. No. 6.	 a) Derive equation of Lorentz velocity transformations and show that speed of light is independent of the relative motion between the frames of reference. b) The siren of a police car emits a source tone at a frequency of 1125 Hz. Find the frequency that would you receive in your car under the following circumstances. (i) Your car at rest, police car moving towards you at 29 m/s. (ii) Police car at rest , your car moving towards it at 29 m/s. (iii) Your and police car are moving towards one another at 14.5 m/s. (iv) Your car moving at 9 m/s, police car chasing behind you at 38 m/s. 			(12) (8)	
Q. No. 7.	 (a) Define Entropy. State Second I (b) Discuss applications of First L (c) Discuss briefly the Lissajous p 	aw of thermodynamics.	n terms of Entropy.	(8) (6) (6)	
Q. No. 8.	 Explain any FOUR of the following te (a) Doppler's Effect (b) Bernoulli's theorem (c) Newton's rings (d) He-Ne Gas LASER (a) Brownian motion 	erms.	(05 each)	(20)	

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2016 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PHYSICS, PAPER-II

TIME ALLOWED: THREE HOURS PART-I(MCQS): MAXIMUM 30 MINUTES		PART-I (MCQS) PART-II	MAXIMUM MARKS = 2 MAXIMUM MARKS = 8				
 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. 							
 (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed. (vi) Extra attempt of any question or any part of the attempted question will not be considered. (vii) Use of Calculator is allowed. 							
PART-II							
Q. No. 2.	 (a) Define electric field intensity <i>E</i>. State its value for a point charge and give its units. (b) State differential form of Gauss's law and from there develops the poisson's & Laplace's equations. (c) A charge of 10√2 Coulomb is located at (3î + 4j + 5k)m. Calculate the electric field intensity at a point having position vector (5î + 4j + 3k)m. 						
Q. No. 3.	 o. 3. (a) Differentiate between a series and parallel resonant circuits. (b) Explain the construction and operation of a transformer. What are energy los a transformer and how are they reduced to a minimum. 						
	(c) A series <i>LCR</i> circuit contains a and a resistor with $R=50\Omega$. Cal between current and voltage. (Tak	culate the impedance a		(4)			
Q. No. 4.	(a) State and explain the basic postul(b) Briefly explain with examples what(c) Derive the time-dependent Schrod	do you mean by Eigen f	unction and Eigen values.	(5) (5) (10)			
Q. No. 5.	(a) Why the resistivity of metals increases with temperature but that of semiconductor decreases?			(6)			
	(b) In the process of making semic Germanium?	onductor devices, why	silicon is preferred over	(4)			
	(c) Briefly explain the construction (BJT). How it can be used as an A		polar Junction Transistor	(10)			
Q. No. 6.	 (a) What do <111>, [010], (111), and (b) What is packing factor? Determin (c) With neat diagram showing X-ray d 	e the Atomic Packing fa	ctor of FCC lattice.	(5) (5) (10)			
Q. No. 7.	Define Curie and Becquerel. Establish Calculate the Decay Constant for 14 C w State and explain Half-life and Mean greater than $T_{1/2}$.	which has half-life of 573	30 years.	(6) (4) (10)			